Ottawa Senateurs
38-20-5, 81pts
STATISTIQUE
Astuces sur les Filtres
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPM PKG PKA PKP PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS
1Aleksander Barkov Senateurs C/LW/RW6331437411120542596917911.97%1721.8491221184101375160.03%149100011.0812
2Lucas Raymond Senateurs LW/RW633242741700262856919911.23%1521.7010616183011114125.69%10900001.0811
3David Pastrnak Senateurs RW633033639220492818620110.68%622.511012221851011205143.24%11100000.8901
4Moritz Seider Senateurs D63104151166016111744948.55%12227.83471119202211511-%000000.5800
5Drake Batherson Senateurs C/RW6316345017200120194521368.25%818.06011700033033.67%9800000.8800
6Filip Forsberg Senateurs LW631632489260147197631588.12%520.42471117300002141.75%10300000.7500
7Quinn Hughes Senateurs D63440441020297422495.41%7023.0318914100014201-%000000.6100
8Brandon Montour Senateurs D63103242346205797277410.31%7226.93691522800012221-%000000.5001
9Connor Clifton Senateurs D63928371676018584305510.71%11824.93210121490008531-%000000.4700
10Frederick Gaudreau Senateurs C/RW63142236-26025183431247.65%1518.6847111840001222053.82%103300000.6103
11Joshua Norris Senateurs C4917143116606094256918.09%610.23000100003256.51%56800011.2400
12Michael McCarron Senateurs C/RW63816241140728519489.41%2112.39111121800111211060.04%97100000.6100
13Alexander Barabanov Senateurs LW/RW6389175402748133416.67%910.31000600014028.28%74600000.5200
14Nicolas Hague Senateurs D394913940361741223.53%2711.65000190002801-%000000.5700
15Ryan O'Reilly Senateurs C637512-300957133112.28%47.28000000000051.28%3900000.5200
16Kaapo Kakko Senateurs RW63448-31203935102111.43%88.03011800031040.00%3500000.3200
17Keegan Kolesar Senateurs RW6335802005029183910.34%59.2600000001150044.00%7500000.2703
18Jacob Bryson Senateurs D382461120131691812.50%4714.5500070001820-%000000.2200
19Sam Lafferty Senateurs C/LW/RW630000000000-%00.050000000000-%000000.0000
Moyenne d'équipe11342254136381273382011592152616154110.46%57516.51519114218552461051381151.78%537900020.68211
Astuces sur les Filtres
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael DiPietro Senateurs 2818610.9062.79158915074786010-02714010
2Alex Nedeljkovic Senateurs 31141330.9023.09172741899060110.400102835101
3Alex Lyon Senateurs 96110.9192.174980118223000-0814100
Moyenne d'équipe68382050.9052.85381519218119150210.400106363211
Astuces sur les Filtres
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT GF% SH% SV% PDO PDOBRK
1SabresSabres540001002310923436600134601896254703148382077133900117222531061206655210100.90023.08%100.00%52.02%51.36%54.65%1188511835643366.7%12.2%93.2%105.4LUCKY
2BruinsBruins31100001121131219310037221072240429842524741041250117222531061206655210100.50040.00%58.33%52.02%51.36%54.65%73517223381957.1%11.2%86.9%98.1FUN
3RangersRangers311000019103918270033309125273571132939441121211117222531061206655210100.50018.18%91.67%52.02%51.36%54.65%70487423401943.8%9.9%91.2%101.0LUCKY
4PredatorsPredators1010000025023500101032101210052542140210117222531061206655210100.0000.00%50.00%52.02%51.36%54.65%231623713633.3%6.3%90.4%96.6Unlucky
5Red WingsRed Wings4400000021582138590211460147505245092321665247710117222531061206655210101.00029.17%85.71%52.02%51.36%54.65%110777828512777.8%14.3%94.6%108.9LUCKY
6JetsJets2110000058257120021207938192206316103592540117222531061206655210100.50022.22%20.00%52.02%51.36%54.65%44295015251342.9%6.3%87.3%93.6Unlucky
7HurricanesHurricanes20200000370358001110512617805713214861730117222531061206655210100.00016.67%57.14%52.02%51.36%54.65%43285015261233.3%5.9%87.7%93.6Unlucky
8CapitalsCapitals320010001266122436004521111334037192291254135600117222531061206655210101.00038.46%100.00%52.02%51.36%54.65%72516922381953.8%10.8%93.5%104.3LUCKY
9CanadiensCanadiens421001001095101929004420144604537295311080152510117222531061206655210100.62513.33%80.00%52.02%51.36%54.65%103728630532750.0%6.9%90.5%97.5Unlucky
10LightningLightning51202000191861934530086321545652433137362089192710117222531061206655210100.60010.53%85.71%52.02%51.36%54.65%1248711136683450.0%12.3%86.9%99.2FUN
11FlyersFlyers412010009124918270043111223348383136443367111920117222531061206655210100.5009.09%77.78%52.02%51.36%54.65%96679430522644.4%7.4%91.2%98.6DULL
12SharksSharks110000006326101600114041119210241062343320117222531061206655210101.00075.00%33.33%52.02%51.36%54.65%271919612675.0%14.6%87.5%102.1FUN
13AvalancheAvalanche1100000032236900003025771103526121620610117222531061206655210101.0000.00%83.33%52.02%51.36%54.65%211326712675.0%12.0%94.3%106.3LUCKY
14DucksDucks10100000060000000000287138043881810400117222531061206655210100.0000.00%100.00%52.02%51.36%54.65%23162361260.0%0.0%86.0%86.0Unlucky
15OilersOilers11000000632611170022203613914037922232100117222531061206655210101.00066.67%100.00%52.02%51.36%54.65%211425813657.1%16.7%91.9%108.6LUCKY
16Maple LeafsMaple Leafs6320100021178214061109741172605259117649321171131640117222531061206655210100.66727.27%75.00%52.02%51.36%54.65%1308815343773758.1%12.2%90.3%102.6FUN
17CanucksCanucks110000003123690021003471512022742130210117222531061206655210101.0000.00%50.00%52.02%51.36%54.65%2921186126100.0%8.8%95.5%104.3DULL
18WildWild101000002502460020003515128028561441300117222531061206655210100.00025.00%100.00%52.02%51.36%54.65%241722712616.7%5.7%82.1%87.9Unlucky
19KingsKings1100000052259140003202831780411362031310117222531061206655210101.00033.33%66.67%52.02%51.36%54.65%221523713680.0%17.9%95.1%113.0LUCKY
20Golden KnightsGolden Knights100010005425813001211541322163341061661310117222531061206655210101.00016.67%66.67%52.02%51.36%54.65%292121713757.1%9.3%88.2%97.5FUN
21StarsStars101000003403580012003510169029622031100117222531061206655210100.00033.33%100.00%52.02%51.36%54.65%271921611633.3%8.6%86.2%94.8Unlucky
22FlamesFlames10100000240235002000331511702988720410117222531061206655210100.0000.00%75.00%52.02%51.36%54.65%241722612540.0%6.1%86.2%92.3Unlucky
23DevilsDevils431000001986193756007840177645756095401666174831117222531061206655210100.75023.53%62.50%52.02%51.36%54.65%115837326512875.0%10.7%91.6%102.3LUCKY
24PanthersPanthers21001000744714210032115926161526021143482710117222531061206655210101.00025.00%85.71%52.02%51.36%54.65%41275215271262.5%11.9%93.3%105.2LUCKY
25IslandersIslanders10000001341358002010421411145362682341410117222531061206655210100.50025.00%75.00%52.02%51.36%54.65%271925611640.0%7.1%88.9%96.0Unlucky
26PenguinsPenguins3020100011152112031005411962833323112311857143910117222531061206655210100.33321.43%88.89%52.02%51.36%54.65%74506822402036.4%11.5%86.6%98.1FUN
27KrakenKraken1100000042247110013003014115046803120000117222531061206655210101.0000.00%0.00%52.02%51.36%54.65%221524712666.7%13.3%95.7%109.0LUCKY
_Vs Division29166042011137443113207320125134246972336311311207922321365361002363130117222531061206655210100.74123.00%79.37%52.02%51.36%54.65%70248967421338119359.6%11.6%90.7%102.3FUN
_Vs Conference4923140720317913665179334513127758379166255954453139143344428389517640118242117222531061206655210100.66322.73%79.66%52.02%51.36%54.65%1202838112836064232555.4%10.8%90.5%101.3FUN
_Since Last GM Reset633020082032251858122541363812927352102152722717682421916575357115922251155362117222531061206655210100.64322.97%76.77%52.02%51.36%54.65%15451077145246182141653.9%10.5%90.3%100.8FUN
Total633020082032251858122541363812927352102152722717682421916575357115922251155362117222531061206655210100.64322.97%76.77%52.02%51.36%54.65%15451077145246182141653.9%10.5%90.3%100.8FUN

Puck Time
Offensive Zone 24
Neutral Zone 13
Defensive Zone 23
Puck Time
Offensive Zone Start 2253
Neutral Zone Start 1010
Defensive Zone Start 2066
Puck Time
With Puck 31
Without Puck 29
Faceoffs
Faceoffs Won 2785
Faceoffs Lost 2544
Team Average Shots after League Average Shots after
1st Period 11.59.57
2nd Period 22.820.31
3rd Period 33.730.68
Overtime 34.331.4
Goals in Team Average Goals after League Average Goals after
1st Period11.59.57
2nd Period22.820.31
3rd Period33.730.68
Overtime34.331.4
Even Strength Goal171
PP Goal51
PK Goal2
Empty Net Goal1
Home Away
Win 2018
Lost 812
Overtime Lost 14
Win2018
Lost812
Overtime Lost14
Home
Shots For34.2
Shots Against30.4
Goals For3.6
Goals Against2.9
Hits18.4
Shots Blocked9.1
Pim5.7