Colorado Avalanche
29-21-13, 71pts · 9th in Ouest
STATISTIQUE
Astuces sur les Filtres
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPM PKG PKA PKP PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS
1Roope Hintz Avalanche C/LW63312960900282307317813.48%518.08841215100045159.09%8800021.0511
2Matthew Boldy Avalanche LW/RW6329285714200622758421910.55%819.333912155000104029.03%9300000.9424
3Claude Giroux Avalanche C/LW/RW631540551328091213611457.04%1320.272911156000503059.75%161000000.8600
4Timo Meier Avalanche LW/RW6319224197020122206691499.22%917.3836915000012134.07%9100010.7500
5Nic Dowd Avalanche C/RW63142337102809114226979.86%3218.1300001121811255.11%153500100.6500
6Mason McTavish Avalanche C/LW6315203516180104172421178.72%516.85000100014249.46%9300000.6604
7Ryan McLeod Avalanche C6382533-1100913638975.88%612.442101215000000055.64%103700000.8401
8Dmitry Orlov Avalanche D6362531133401087012508.57%10724.0232515100018411-%000000.4100
9Ryan Pulock Avalanche D6381725-12156074416410.81%7520.233251520006911-%000000.3900
10Damon Severson Avalanche D561232410240515324411.89%7519.7607713300016900-%000000.4300
11William Borgen Avalanche D6361622-556012757215410.53%10121.1443714900018610-%000000.3300
12Morgan Geekie Avalanche C638917-1220061128401046.25%512.4922415200000048.89%4500000.4300
13Nico Sturm Avalanche C636612-480447124488.45%99.8300000111721152.17%4600000.3900
14Brendan Smith Avalanche LW/D63279-8415783416205.88%6016.1000090004801-%000000.1800
15Noel Acciari Avalanche C/RW63448-7160705324467.55%1710.1500050001831150.12%83000000.2500
16Vincent Desharnais Avalanche D51167-57010110218294.76%7421.33000201111200-%000000.1300
17Kirby Dach Monsters (COL) C24325-312029387317.89%212.500002000581039.29%2800000.3303
18Cole Koepke Avalanche C/LW/RW42145-10220533812182.63%712.0900000001140022.50%4000000.2000
19Adam Gaudette Avalanche C63314-800146715424.48%37.48000200073053.57%2800000.1700
20Kurtis MacDermid Monsters (COL) D16112529525101010.00%1316.38000181011600-%000000.1500
Moyenne d'équipe113418130848925517451337208863815498.67%62616.4330548415462351573281154.60%556400130.52313
Astuces sur les Filtres
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Karel Vejmelka Avalanche 48191870.9043.0326104113213690010.700104716622
2Sergei Bobrovsky Avalanche 2310360.9212.47121521506310000.33331647212
Moyenne d'équipe712921130.9092.8638256218220000010.615136363834
Astuces sur les Filtres
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT GF% SH% SV% PDO PDOBRK
1SabresSabres10000001231235000110365161354010141431700125422481231222255310230.50033.33%100.00%55.78%55.40%54.06%231529712625.0%5.6%92.5%98.1DULL
2RangersRangers2100010066361016003210712222252662283882300125422481231222255310230.75025.00%100.00%55.78%55.40%54.06%45304816271340.0%8.5%90.9%99.4Unlucky
3PredatorsPredators522001001615516264200727015545426531415036871441830125422481231222255310230.50028.57%83.33%55.78%55.40%54.06%1198211836663250.0%10.3%89.4%99.7FUN
4JetsJets5130000110153101828014511126424042516160551201412530125422481231222255310230.3007.14%88.00%55.78%55.40%54.06%1066813039673242.9%7.9%90.7%98.6Unlucky
5CapitalsCapitals11000000412471100220029111350288172620600125422481231222255310231.0000.00%100.00%55.78%55.40%54.06%201326713680.0%13.8%96.4%110.2LUCKY
6LightningLightning11000000312369001110381771403010101821500125422481231222255310231.00050.00%100.00%55.78%55.40%54.06%241622713666.7%7.9%96.7%104.6DULL
7FlyersFlyers101000002502240011002148903516122641630125422481231222255310230.00025.00%50.00%55.78%55.40%54.06%201224814633.3%9.5%85.7%95.2FUN
8SharksSharks1000100032235800110155181422118522020100125422481231222255310231.0000.00%100.00%55.78%55.40%54.06%292217612660.0%5.5%88.9%94.3Unlucky
9Black HawksBlack Hawks5210020013116132336015620189576465313955411181131731125422481231222255310230.60027.27%82.35%55.78%55.40%54.06%1258911535653255.6%6.9%92.1%99.0DULL
10DucksDucks21000100973918270032409329293416417235270940125422481231222255310230.7500.00%55.56%55.78%55.40%54.06%54374215271475.0%9.7%89.1%98.7FUN
11OilersOilers413000001013210172710325012340374601463436711211750125422481231222255310230.2508.33%70.59%55.78%55.40%54.06%91629829502452.9%8.1%91.1%99.2Unlucky
12SenateursSenateurs101000002302350001103551911025841561200125422481231222255310230.00016.67%100.00%55.78%55.40%54.06%261821712625.0%5.7%88.0%93.7Unlucky
13Maple LeafsMaple Leafs110000003123580003003571711020642230200125422481231222255310231.0000.00%100.00%55.78%55.40%54.06%251822712675.0%8.6%95.0%103.6DULL
14CanucksCanucks202000001701120010004417141306027203930920125422481231222255310230.0000.00%77.78%55.78%55.40%54.06%45304714261316.7%2.3%88.3%90.6Unlucky
15WildWild31100100683610160031201063532390117352065701000125422481231222255310230.5000.00%100.00%55.78%55.40%54.06%68477622381842.9%5.7%93.2%98.8DULL
16BluesBlues5110020118235183250006840174475666815953481031851830125422481231222255310230.50027.78%83.33%55.78%55.40%54.06%1208012236663439.4%10.3%85.5%95.9FUN
17KingsKings4220000071047132000133014141574301183624871821101125422481231222255310230.50011.11%100.00%55.78%55.40%54.06%98688928522633.3%5.0%91.5%96.5DULL
18Golden KnightsGolden Knights310010108568111900312393313424876272851121910125422481231222255310231.0008.33%88.89%55.78%55.40%54.06%73517123402163.6%8.6%93.4%102.0DULL
19StarsStars3200100012761220320062311012738324101242664501200125422481231222255310231.0000.00%100.00%55.78%55.40%54.06%76526822392063.2%11.9%93.1%105.0LUCKY
20FlamesFlames4030100091229152400620112945532921313526941011220125422481231222255310230.25010.00%83.33%55.78%55.40%54.06%96679627482344.4%7.0%90.8%97.8Unlucky
21DevilsDevils1100000084281321001340531221200301082131310125422481231222255310231.00033.33%66.67%55.78%55.40%54.06%272020611670.0%15.1%86.7%101.8FUN
22PanthersPanthers21000100883813210014307921322606816185941830125422481231222255310230.75025.00%62.50%55.78%55.40%54.06%46324814251258.3%10.1%88.2%98.4FUN
23IslandersIslanders1000010045147110013002871650351021542100125422481231222255310230.50050.00%100.00%55.78%55.40%54.06%221624713628.6%14.3%85.7%100.0FUN
24PenguinsPenguins1000100043246100010211738334712102320510125422481231222255310231.0000.00%80.00%55.78%55.40%54.06%201328813666.7%23.5%93.6%117.1LUCKY
25KrakenKraken43100000141161424380075201174442310146403189621210125422481231222255310230.75033.33%91.67%55.78%55.40%54.06%825310130552654.5%12.0%92.5%104.4LUCKY
_Vs Division26980160275792875129204023124192851253272309238182772265576913100121125422481231222255310230.53818.84%88.00%55.78%55.40%54.06%61642163119334217148.1%8.8%90.3%99.2Unlucky
_Vs Conference50171904712136146531362333691256403571646518552551351577498416106013920180272125422481231222255310230.53014.39%85.00%55.78%55.40%54.06%1188814119737165632649.4%8.3%90.7%99.0Unlucky
_Since Last GM Reset632321051013182186711823084901267614882088632731693452001626523133718030228352125422481231222255310230.56316.67%84.65%55.78%55.40%54.06%14921022151547082741050.2%8.7%90.7%99.4Unlucky
Total632321051013182186711823084901267614882088632731693452001626523133718030228352125422481231222255310230.56316.67%84.65%55.78%55.40%54.06%14921022151547082741050.2%8.7%90.7%99.4Unlucky

Puck Time
Offensive Zone 23
Neutral Zone 13
Defensive Zone 24
Puck Time
Offensive Zone Start 2248
Neutral Zone Start 1023
Defensive Zone Start 2222
Puck Time
With Puck 30
Without Puck 30
Faceoffs
Faceoffs Won 3038
Faceoffs Lost 2455
Team Average Shots after League Average Shots after
1st Period 10.09.57
2nd Period 21.620.31
3rd Period 32.630.68
Overtime 33.331.4
Goals in Team Average Goals after League Average Goals after
1st Period10.09.57
2nd Period21.620.31
3rd Period32.630.68
Overtime33.331.4
Even Strength Goal149
PP Goal30
PK Goal2
Empty Net Goal1
Home Away
Win 1514
Lost 1011
Overtime Lost 67
Win1514
Lost1011
Overtime Lost67
Home
Shots For33.1
Shots Against31.8
Goals For2.9
Goals Against3.0
Hits21.2
Shots Blocked9.9
Pim8.3